TOPIC | 5.1

Chemical Bonds: An Overview

What are chemical bonds and why do they form?

Chemical change involves the movement of electrons to form new substances, and in that process bonds are bken and formed.

Cl

Breaking bonds: absorbs/requires

$$\bigcirc$$

Na

Making bonds:

releases

NaCl

Why bother forming bonds at all? Recall from Unit 4 that reactivity depends on: __STabil1 Depending on the type of elements involved, there are different types of bonds that will form

Bond type is determined by differences in _

electronegativity

What's that again?

ability of an atom to attract electrons in a chemical bond

DENK 1.7

OVALENT BONDS

- Electrons are Shared between atoms because of a_ Small difference in electronegativity (ΔEN)
- Form between...

nonmetals

IONIC

BONDS

- Electrons are Transferred between utoms because of a large difference in electronegativity (ΔEN)

Form between...

metal & nonmetal

5.2

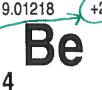
Chemical Formulas: Ionic Compounds

How do we know the ratios that a positive ion and negative ion will combine?

Metals & Nonmetals

The sum of charges in an ionic compound must = ZERO!

How do we know the charge of each element in an ionic compound?


METALS 1050 electrons to form positively charged ions

NONMETALS adim electrons to form mead by the charged ions

The charge that an element has can also be determine by checking out its:

Oxidation #

ATable E

2-2

Practice

Sodium bonding with chlorine: NaCl

Magnesium bonding with chlorine: $MgCl_2$ $Mg^{2\dagger}$ Cl^{-1} l: 2 ratio

Polyatomic lons - many atoms covalently bonded together; the whole structure acts as a single charged unit (ION)

Ammonium bonding with chlorine: _____NH4Cl

NHyt

What type of bonding is present in these compounds?

Calcium bonding with hydroxide: _____ (a (0H) 2

Transition Metals (Groups 3 - 12)

Fe^{2†} C1 C1 55.845

OR

Fe³⁺ C1⁻ C1⁻

or Cu2+ 02-

9

Naming Ionic Compounds

How do we name ionic compounds?

I. Rules for Naming Ionic Compounds

Chemists have a universal way of naming compounds based on what's called the IUPAC system. That way scientists from all across the world can have a common language when writing/talking about compounds.

Here's how to talk about ionic compounds in the language of chemistry:

- 1) First, name the positively charged ion
 - · Metal element name (unchanged)
 - Polyatomic Ion Table F.
- 2) Next, write the name of the negatively charged ion
 - Nonmetal Table S, but change the suffix to "-ide"
 - Polyatomic Ion Table E

Most Common Nonmetals

Hydrogen = hydride

Carbon = carbide

Oxygen = oxide

Fluorine = fluor de

sulfide Sulfur =

Phosphorous = phosphide

Practice – Fill in the following table by naming the compound or writing the formula based on the rules outlined above

Formula	Name
Na₃N	Sodium nitride
Al ₂ S ₃	aluminum Sulfide
Ca(OH)₂	calcium hydroxide
LiF	Lithium fluoride
Mg Cl2	Magnesium chloride Mg ²⁺ Cl ⁻ Cl
Ca3Pa	Calcium phosphide Ca ²⁺ p ³⁻ or Ca ²⁺ p ³⁻
	4-24

II. Stock System - Transition Metals

Ca2 + Remember when we tried to write the chemical formula for when iron bonds with chlorine, but there were multiple options? How do we name it so we know exactly which option we're talking about?

Since transition metals have multiple <u>Charges</u>, we have to use Roman numerals to refer to which charge the atom has in that particular compound.

Practice Problems - Name the following ionic compounds

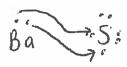
TOPIC 5.4

Lewis Dot Structures: Ionic Compounds

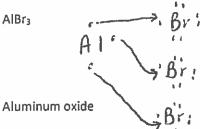
How can we model ionic compounds using Lewis Dot Structures?

Steps for Drawing Lewis Dot Diagrams of Ionic Compounds

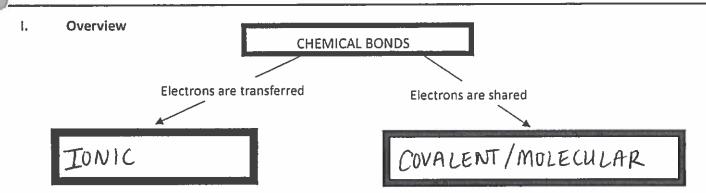
1. Draw Lewis Dot Diagrams for each individual element in the compound Example: NaCl


- 2. Draw arrows to indicate the transfer of electrons
- 3. Redraw the bonded compound with appropriate dots, brackets, and charges

Practice Problems


KF

BaS


AlBr₃

TOPIC 5.6

Covalent/Molecular Bonding - Diatomic Elements

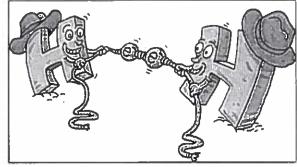
Why do some elements share electrons?

II. Diatomic Elements

Recall that there are 7 elements that exist naturally as pairs, or as diatomic elements. YOU MUST MEMORIZE THESE.

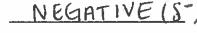
Why do these elements pair up in nature? STABILITY.

Diatomic Element	Lewis Dot Structure of Individual Atoms	Lewis Dot Structure of Covalent Molecule	# of bonds present	# of electrons shared
H ₂	H TH Covalent bond	H-H I dashed line Ly single bond	1 single	2
02		2 dashed lines	2 double bond	4
F ₂ (Cl ₂ Br ₂ l ₂)	F. F:	······································	1 single bond	2
N ₂	ONO ONO	: N = N: 3 dashed lines 9-triple bond	3 triple bond	6


TOPIC 5. **6**

→ Polarity of Chemical Bonds

How do differences in electronegativity affect electron sharing?

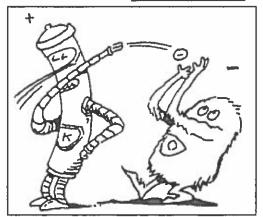

- **Nonpolar Covalent Bonds** t.
 - Electrons are <u>CQUAIIU</u> shared between atoms
 - $\Delta EN = 0$
 - Examples:

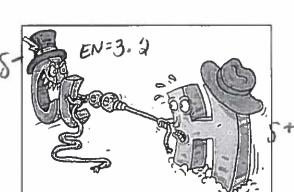
> Diatomic molecules

- **Polar Covalent Bonds** II.
 - Electrons are <u>unequally</u> shared between atoms
 - > The atom with the greater EN


pulls the electrons closer and becomes partially

> The atom with the lower EN


becomes partially


POSITIVE

- Examples:
 - N and H
 - ➤ Hand F
- **Ionic Bonds** III.
 - Ionic bonds are considered completely polarized
 - $\Delta EN > 2.0$
 - The nonmetal "pulls" so much harder on the electrons that they are completely transferred from the __metal atom

TOPIC 5.7

Lewis Dot Structures: Covalent/Molecular Compounds

How can we model covalent compounds using Lewis dot structures?

u've already seen how to draw Lewis dot structures of covalent compounds when we looked at the 7 diatomic elements. Let's revisit the concepts/vocabulary involved:

Bond Type	Electron Pairs Shared	Total Electrons Shared	Example Diagram	
SINGLE BOND	1	2	F-F:	
Multiple Covalent Bo	nds			
DOUBLE BOND	\mathcal{A}	4	0=0	
TRIPLE BOND	3	0	: N = N :	

So we've seen examples of each type of bond in the diatomic molecules with just 2 atoms; but what about molecules that have more than 2 atoms, like H_2O or CCl_4 or $C_{11}H_{22}O_{11}$? (just kidding about that last one, you won't have to draw a molecule that big)

PLAN OF ATTACK (aka rules for drawing Lewis Dot Diagrams of Covalent Compounds)

Steps	Example – CO ₂
 Make sure you are dealing with a covalent compound and NOT an ionic compound 	2 nonmetals
2) Draw Lewis Dot Stuctures of each individual atom, arranged so that the element that can form the most attachments is in the center Carbon: 4 Nitrogen: 3 Oxygen: 2 Halogens and hydrogen: 1 3) Circle bonding electron pairs so that all atoms	
have satisfied the octet rule.	
 "Clean it up" – replace circled electrons with single lines to represent bonds 	O = C = O

Nolarity of Molecules

How does symmetry affect the polarity of molecules?

: CI :

Each individual bond in the CCI4 molecule is polar.

But is the entire molecule polar? NO

think about it like a game of tug-of-war and each team is pulling equally

HOW TO DETERMINE WHETHER A MOLECULE IS POLAR OR NONPOLAR

If the molecule is...

_ lines of symmetry through molecule/compound DI CIO O NON POLAR

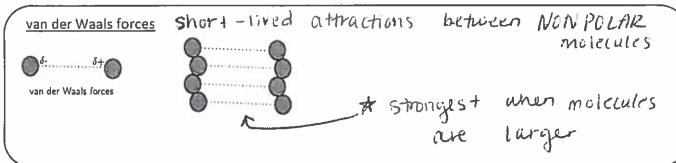
Asymmetrical: <u>ONE</u> <u>NO</u> lines of symmetry through molecule/compound

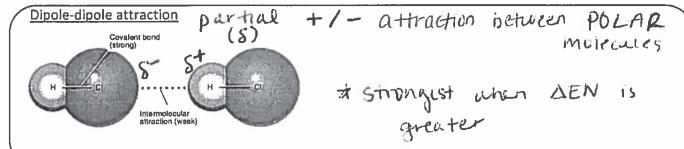
Practice Problems – Determine if the molecule is polar or nonpolar. If polar, identify which end is positive and which is negative.

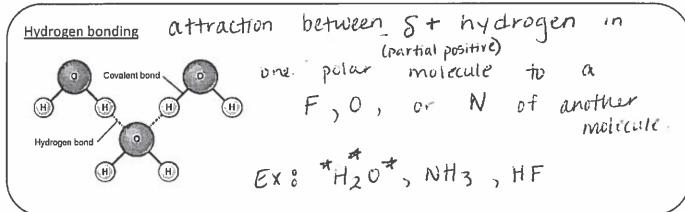
For more practice, go back to Assign. #8 and see if you can determine which molecules are polar.

TOPIC 5.9

→ Intermolecular Forces (IMFs)


What are the different types of forces that hold molecules together?


1. Intermolecular Forces/" Particle Attractions"

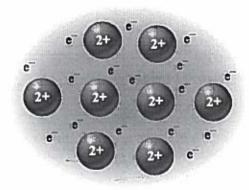

morecules * forces between molecules (NOT bonds)

II. Types of IMFs

between

- III. Importance of IMFs
 - IMFS are determined by the <u>Structure</u> of a substance
 - the Strength of IMFs determines the properties of a substance
 - Example:

The stronger the Intermolecular force, the higher the melting point/boiling point


Recall Table H: Which liquid has the strongest intermolecular forces?

Limunuic

BIG IDEA: STRUCTURE DETERMINES PROPERTIES!!!

You may (or may not) be wondering about bonding between metal atoms. After all, we've discussed bonds that form between a metal and a nonmetal (ionic) and bonds between nonmetals (covalent). So how does, say, chunk of aluminum stay together? The answer lies in another type of "bond" that's not really a bond...

Metallic bond: Attraction between positive metal ions and "sea" of valence electrons

This means of staying attached gives metals unique properties among groups of atoms:

- malleable : able to be flattened into sheets
 - o Contrast: brittle
- <u>ductile</u>: able to be pulled into wires
- good Conductors : able to provide a mobile path for the flow of electricity
- USTEV : distinct metallic shine
- HICH melting points: result of strong attractive forces between nuclei and "delocalized' electrons

Bonding and Physical Properties

Do metals and nonmetals retain their properties when they form compounds?

We've stuck together atoms in many different ways this unit. How does that bonding process affect the properties of the macro-sized samples of elements or compounds that we create? The key idea to tie everything together is that

Chemical structure determines physical properties.

What type of bonds hold a sample of atoms together is a huge component of the sample's chemical structure; therefore, bond type is a key indicator of the physical properties a sample will have.

	Covalent Molecules		Ionic Compounds	Metals	
Bond Type	Nonpolar	Polar			
Type of IMF	van der Waals	dipole- dipole	ion - ion	Anuclei and O electrons	
Melting/boiling point	1000	moderate	high	high	
Phase of matter at STP	5,1,9	5,1,9	solid	Solid	
Conductivity as a solid*	poor	poor	poor	good	
Conductivity as a liquid or aqueous solution*	poor	poor	good	good	
Likelihood to dissolve in water	10W	high	high	low	

*Conductivity is a result of ______ MOBILE ions (or electrons) that can provide electricity with a moving path through which to flow.

Please note that these are just GENERAL trends that certainly have exceptions! This table seeks to give you a big-picture idea of how changing bond type can change the properties of a substance, but note that changing molecule size, ion charge, type of metal, etc. can also have an effect on physical properties!