TOPIC 2.1 ### **HEAT AND TEMPERATURE** What's the difference between heat and temperature? "Hot" and "cold" are commonplace terms. What they mean chemically, though, has to do with **energy**, and in chemistry, energy is all about **particle motion**. #### TEMPERATURE IS A MEASUREMENT. Thermometers are tools that indicate, on a relative scale, how fast particles are moving, on average. In science, *movement* is associated with *kinetic* energy. Temperature = AVERAGE KINETIC ENERGY We have a variety of scales to measure average kinetic energy. Most useful in chemistry are the Celsius and Kelvin scales. Celsius, like Fahrenheit, is a relative scale—numbers can go below zero. Kelvin, though, is an absolute scale, meaning that the lowest you can go is 0 K = zero particle motion (you may have heard of absolute zero before). **HEAT IS A THING.** Well, sort of. Heat is a form of energy (thermal) that can be transferred to particles. What happens to particles when heat is added to a chemical system? TWO IMPORTANT THINGS TO KNOW ABOUT HEAT: How does adding or removing energy from a substance change its physical properties? Ve can trace how adding (or removing) heat from a substance affects its total energy. We do so using a... # **Heating Curve** TOTAL ENERGY = KINETIC ENERGY + POTENTIAL ENERGY To simplify these pictures, we accept that only one type of energy will change at a time. - When temperature is changing, ______ KINETIC _____ energy changes. - When phase of matter is changing, _____POTENTIAL_____ energy changes. Flip it around...the Cooling Curve | | | transformed | Kinetic Energy | | |------------------|-----------------------------|-------------------------|---|--| | | | TYWING | when the temperature | | | Hea | t (Thermal) Energy | -tra | of a solid, liquidi | | | | | transformed | or a gas changes | | | | | | 1 Oteritial Eriergy | | | | | | oduring a phase change | | | | PARTICLE ATTRACT | TIONS (<u>INTERMO)</u> | LECULAR FORCES) | | | SOLID | | LIQUID | GAS | | | 22222 | | ••••• | • | | | 00000 | | • | • | | | | | | | | | Anot mui | h | Asome | AA INT OF | | | potenti | al | potential | AA LOT of potential | | | | | | | | | ➤ So,i | n order to go from <u>S</u> | 9 1 7 G part | ticle attractions (or IMFs) need to be Wlukened | | | or (| NLVWML . This iob | requires ENERG' | 1 in the form of HEAT. | | | - · | , | | | | | > Duri | ng a phase change, the | temperature (k | (E) does NOT change because the heat is being use | | | | | | INCREASING POTENTIAL ENERGY. | | 2.4 How can we quantify heat required for a temperature change? # Table B Physical Constants for Water | Heat of Fusion | 334 J/g | |----------------------------------|------------| | Heat of Vaporization | 2260 J/g | | Specific Heat Capacity of H₂O(ℓ) | 4.18 J/g•K | Darken the areas of the heating curve where the temperature is changing. In these areas, the amount of heat you need to add is dependent on 3 things: - 1. how much stuff we have 2. how much you want to change the T 3. how tolerant the substance is to Changes in T Specific heat: Tells us the amount of ENERGY (Joules) needed to raise 1 gram of a substance 1 Kelvin (or 1 °C) - A large/high specific heat means it takes __A_LOT of energy for the temperature to change - \triangleright A small/low specific heat means it only takes a A LITTLE amount of energy for the temperature to change # THE EQUATION YOU NEED: $q = mC\Delta T$ Use the selection from the reference table to figure out the symbols: - 1. What does a stand for? heat - 2. What does m stand for? Mass - 3. What does C stand for? SDECITIC - What does ΔT stand for? Example Problem: How much heat is needed to raise the temperature of 2 grams of liquid water from 10 °C to 20 °C? As can be seen in Table B, the specific heat capacity of water is 4.18 J/g • K. $$g = m C \Delta T$$ $G = (2)(4.18)(10)$ $G = (2)(4.18)(10)$ $G = 83.67$ $G = 83.67$ $G = 83.67$ TOPIC 2.5 ## HEAT OF FUSION & VAPORIZATION How can we quantify heat required for a phase change? We've seen and represented the change in particle spacing and motion when heat is added to a sample of matter. What we haven't done is calculated just how much heat is needed to bring about those changes. Table B Physical Constants for Water | Heat of Fusion | 334 J/g | |----------------------------------|------------| | Heat of Vaporization | 2260 J/g | | Specific Heat Capacity of H₂O(ℓ) | 4.18 J/g•K | Darken the areas of the heating curve where the phase of matter is changing. Does it take more energy for melting (fusion) or boiling (vaporization) to occur? WHY? to go from a l >q, you have to completely overcome particle attractions In these areas, the amount of heat you need to add is dependent on only 2 things: - 1. The mass of the substance (how much stuff do you have?) - 2. How hard it is for the substance to change phase - Heat of fusion: amount of energy (J) involved in melting or freezing a certain amount of stuff (g) Heat of vaporization: amount of energy (J) involved in boiling OR condensing a certain ant of stuff (g) THE EQUATION YOU NEED: q = mHf OR q = mHv Use the selection from the reference table to figure out the symbols: - 1. What does q stand for? hea+ - 2. What does H_f stand for? ____heat ot fusion - You will use H_f for melting/freezing problems. - vaporization 3. What does H_v stand for? Pat - You will use H_v for evaporation/condensation problems.