Topic 1: Reflection

❖ What is Reflection?

- o When light strikes a <u>Shiny smooth</u> surface it bounces off the surface at the same angle it struck the surface
- o Imagine a line perpendicul ar to the reflecting surface
 - The "normal"
- o Angle between the path of an incoming ray and the normal = $\frac{\text{Angle of Incidence}}{\text{Incidence}} = \frac{\theta}{\theta}$
- o Reflected ray makes the same angle, but on the other side of the normal
 - The Law of Reflection

* Reflection in real life

- o Retroreflector
 - Reflects light at the same _______, regardless of orientation
 - Used for surveying, for precise measurements of distance

 Glass beads on traffic signs, license plates, painted stripes on roads, clothing, running shoes

Eyes are retroreflective

Topic 2: Refraction

- We know that reflection of light occurs when light strikes a surface that is not shiny and smooth?
 - o Light can be absorbed, refracted, or transmitted
 - some materials transmit more than they reflect or absorb

Explain what's happening in the image to the left:

Light traveling through
the air hits surface
of pond; some of the
light is reflected, most is
transmitted

- Refraction
 - o It is the bending of light at an interface between two different materials
 - o Results from a change in <u>Speed</u> as light travels from one material to another
 - Light travels <u>he fastest</u> in a vacuum (empty space), and different speeds in different materials
 - Wave fronts slow down when entering a different material

Topic 3: Index of Refraction & Snell's Law

- The speed of light in a material is determined by a factor called the:
 - o index of refraction (or refractive index), n
 - o c = speed of light in vacuum
 - o v = speed of light in the material
- The greater the index of refraction, the __S\u00fcwere light travels in the material

Absolute Indices of Refraction $(f = 5.09 \times 10^{14} \text{ Hz})$	
Air	1.00
Corn oil	1.47
Diamond	2.42
Ethyl alcohol	1.36
Glass, crown	1.52
Glass, flint	1.66
Glycerol	1.47
Lucite	1.50
Quartz, fused	1.46
Sodium chloride	1.54
Water	1.33
Zireon	1.92

- Snell's Law
 - o Also known as the Law of Refraction
 - Used to determine the angle of refraction

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

- n_1 = index of refraction for medium 1
- n_2 = index of refraction for medium 2
- θ_1 = angle of incidence
- θ_2 = angle of refraction
- 1. A ray of light ($f = 5.09 \times 10^{14}$ Hz) traveling in air strikes a block of sodium chloride at an angle of incidence of 30.°. What is the angle of refraction for the light ray in the sodium chloride?

- B) 25° C) 40.° D) 49°

(1.00) sin 30 = (1.54) sin 02

0.3247 = sin02 92 =18.9

2. The diagram below shows a ray of light passing from medium X into air.

(x) sin30 = (1) sin 60

What is the absolute index of refraction of medium X

A) 0.500 B) 2.00 (C) 1.73 D) 0.577

Topic 4: Total Internal Reflection

- We know that...
 - o Light can be reflected by a shiny, smooth surface
 - o Light can be refracted at an interface between two different materials
- ❖ Today we will see that...
 - o Light can also be <u>reflected</u> at an interface between two different materials

 - As the angle of incidence ______, the angle of refraction ______, the angle of refraction ______,

- At this point, if you continue to increase the angle of incidence, then all of the light will be reflected within the denser medium. This is known as:

- To summarize, in order for total internal reflection to take place
 - o The ray of light must travel from a ______ medium to a less dense medium
 - o The angle of incidence must be ______ than the critical angle

Topic 5: Scattering

- When light rays strike atoms, molecules, other tiny particles or ______ surfaces, the rays of light are sent off in _____ directions (_______)
- * Transparent materials let light pass through with little scattering
 - o We can see through such a material

- Translucent materials allow light to pass through it, but the material scatters each wave in many directions
 - o We cannot see through such a material (example: frosted window)

◆ _ Opa g Wl ___ materials block all light

Topic 6: Rainbows

How is a rainbow formed?

θ_{blue}

Blue light refracts more than red light due to the difference in wavelength. This cause blue light to deviate from its original path by a greater angle than the red light.

*each color of light slows down differently leach has a unique index of refraction - n)

How is a double rainbow formed?

sun

What do you observe about the colors in the double rainbow?

The 2rd reflection reverses the colors blc there are 2 reflections, and the 2rd rain bow is dimmer

