Name:

Unit 11 Nuclear Chemistry Practice Test

1. A sample of which radioisotope emits particles having the greatest mass?	8. Which radioisotopes have the same decay mode and have half-lives greater than 1 hour?		
(1) ${}^{137}Cs$ (2) ${}^{53}Fe$ (3) ${}^{220}Fr$ (4) ${}^{3}H$	 (1) Au-198 and N-16 (2) Ca-37 and Fe-53 (3) I-131 and P-32 (4) Tc-99 and U-233 		
Given the equation representing a nuclear reaction in which X represents a nuclide:	9. The dating of geological formations is an example of a beneficial use of		
$^{232}_{90}$ Th $\rightarrow ^{4}_{2}$ He + X	(1) isomers		
Which nuclide is represented by <i>X</i> ?	(2) electrolytes		
(1) $^{236}_{92}$ Ra (2) $^{228}_{88}$ Ra (3) $^{236}_{92}$ U (4) $^{228}_{88}$ U	(3) organic compounds(4) radioactive nuclides		
3. Which list of nuclear emissions is arranged in order from the <i>least</i> penetrating power to the greatest penetrating power?	10. What is the total number of years that must pass before only 25.00 grams of an original 100.0-gram sample of C-14 remains unchanged?		
(1) alpha particle, beta particle, gamma ray(2) alpha particle, gamma ray, beta particle(3) gamma ray, beta particle, alpha particle	(1) 2865 y (2) 5730 y (3) 11 460 y (4) 17 190 y		
(4) beta particle, alpha particle, gamma ray	11. What is the half-life of a radioisotope if 25.0 gram of an original 200gram sample of the isotope		
4. Which balanced equation represents a spontaneous radioactive decay?	remains unchanged after 11.46 days?		
(1) $14C + Ca_3(PO_4)_2 \rightarrow 3CaC_2 + 2P + 8CO$ (2) $_7^{14}N + _0^1n \rightarrow _6^{14}C + _1^1P$	(1) $2.87 d$ (2) $3.82 d$ (3) $11.46 d$ (4) $34.38 d$		
(3) $H_2CO_3 \rightarrow H_2O + CO_2$	12. Which term represents a nuclear reaction?		
(4) ${}_{6}^{14}C \rightarrow {}_{7}^{14}N + {}_{-1}^{0}e$	(1) combustion (2) fermentation		
5. Positrons and beta particles have	(3) transmutation (4) saponification		
(1) the same charge and the same mass	13. Which equation represents natural transmutation?		
(2) the same charge and different masses	(1) ${}_{5}^{10}\text{B} + {}_{2}^{4}\text{He} \rightarrow {}_{7}^{13}\text{N} + {}_{0}^{1}\text{n}$ (2) ${}_{6}^{14}\text{C} \rightarrow {}_{7}^{14}\text{N} + {}_{-1}^{0}\text{e}$ (2) ${}_{8}^{5} + {}_{2}{}_{6}^{-} \rightarrow {}_{8}^{2}$		
(4) different charges and different masses			
6. Which type of radiation has <i>neither</i> mass nor charge?	(3) $S + 2e \rightarrow S$ (4) $Na \rightarrow Na^+ + e^-$		
(1) gamma (2) neutron	14. Which nuclear equation represents a natural		
(3) alpha (4) beta	transmutation?		
7. A radioactive isotope has a half-life of 2.5 years. Which fraction of the original mass remains unchanged after 10. years?	(1) ${}^{9}_{4}\text{Be} + {}^{1}_{1}\text{H} \rightarrow {}^{6}_{3}\text{Li} + {}^{4}_{2}\text{He}$ (2) ${}^{27}_{13}\text{Al} + {}^{4}_{2}\text{He} \rightarrow {}^{30}_{15}\text{P} + {}^{1}_{0}\text{n}$ (3) ${}^{14}\text{N} + {}^{4}_{2}\text{He} \rightarrow {}^{87}_{8}\text{O} + {}^{1}_{1}\text{H}$ (4) ${}^{227}_{7}\text{C} = {}^{221}_{7}$		
(1) 1/2 (2) 1/4 (3) 1/8 (4) 1/16	$(4) \frac{233}{92} U \rightarrow \frac{231}{90} Th + \frac{4}{2} He$		

15. F t	5. Radioactive cobalt-60 is used in radiation therapy treatment. Cobalt-60 undergoes beta decay. This type of nuclear reaction is called		22. The decay of which radioisotope can be used to estimate the age of the fossilized remains of an insect?			
() () ()	 (1) natural transmutation (2) artificial transmutation (3) nuclear fusion 		23.	(1) Rn-222(3) Co-60	(2) I-131 (4) C-14	
((4) nuclear fission	A serious risk factor associated with the operation of a nuclear power plant is the production of				
16. V	16. What occurs in both fusion and fission reactions?(1) Small amounts of energy are converted into large amounts of matter.			(1) acid rain		
((2) helium gas(3) greenhouse gases such as CO2		
((2) Small amounts of matter. (2) Small amounts of matter are converted into large amounts of energy. (3) Heavy nuclei are split into lighter nuclei. (4) Light nuclei are combined into heavier nuclei. 	(4) radioisotopes with long half-lives				
((24. Which type of reaction produces energy and intensely radioactive waste products?				
17. V e	Which reaction release energy per mole of rea	s the greatest amount of ctant?		 (1) fusion of tritium and deuterium (2) fission of uranium (3) burning of heating oil (4) burning of wood 		
(decomposition fermentation 	(2) esterification(4) fission				
18. C r	Given the balanced eque reaction:	ation representing a nuclear	25.	Given the fusion reaction ${}_{1}^{2}\mathrm{H} + {}_{1}^{2}\mathrm{H} \rightarrow X + \mathrm{energ}$	action: lergy	
2 \	235 92U + 1 0n $ ightarrow$ 142 56Ba Which particle is repre	$_{2}\text{U} + {}^{1}_{0}\text{n} \rightarrow {}^{142}_{56}\text{Ba} + {}^{91}_{36}\text{Kr} + 3X + \text{energy}$ ich particle is represented by X?		Which particle is repre	sented by X?	
((1) 0 -1e (2) 1 1H (3) 4 2H (4) 1 0n		26. Given the nuclear reaction: ${}^{32}_{16}S + {}^{1}_{0}n \rightarrow {}^{1}_{1}H + X$			
19. I	In which reaction is mass converted to energy by the process of fission? (1) $_{7}^{14}N + _{0}^{1}n \rightarrow _{6}^{14}C + _{1}^{1}H$ (2) $_{7}^{235}H + _{1}^{1}n \rightarrow _{6}^{87}Dn + _{1}^{146}H + _{2}^{1}hn$					
p						
(
(2) $_{92}$ 0 0 $^{+}$ $_{35}$ 0 $^{+}$ $_{57}$ $^{-}$ $^{-}$ $^{+}$ $^{-}$		What does X represent in this reaction?				
((4) $^{2}_{1}\text{H} + ^{2}_{1}\text{H} \rightarrow ^{4}_{2}\text{He}$		(1) $^{31}_{15}P$ (2) $^{32}_{15}P$ (3)) $^{31}_{16}P$ (4) $^{32}_{16}P$		
20. Which isotope is used to treat cancer?		27.	27. Which balanced equation represents nuclear fusion?			
((1) C-14	(2) U-238		(1) ${}_{1}^{2}\text{H} + {}_{1}^{2}\text{H} \rightarrow {}_{2}^{4}\text{He}$ (2) ${}_{2}^{2}\text{H}_{2} + \Omega_{2} \rightarrow {}_{2}^{2}\text{He}$)	
((3) Co-60 (4) Pb-206		(2) ${}^{6}_{3}\text{Li} + {}^{1}_{0}\text{n} \rightarrow {}^{3}_{1}\text{H} +$	4_2 He		
21. V c	Which radioisotope is used to treat thyroid disorders?		(4) $CaO + CO_2 \rightarrow CaCO_2$			
((1) Co-60	(2) I-131	28.	As a radioactive eleme only, the atomic numb	nt emits gamma radiation er of the element	
((3) C-14 (4) U-238		(1) decreases(3) remains the same	(2) increases		

Base your answers to questions **29** through **32** on the information below and on your knowledge of chemistry.

In 1896, Antoine H. Becquerel discovered that a uranium compound could expose a photographic plate wrapped in heavy paper in the absence of light. It was shown that the uranium compound was spontaneously releasing particles and high-energy radiation. Further tests showed the emissions from the uranium that exposed the photographic plate were *not* deflected by charged plates.

- 29. Identify the type of nuclear reaction that occurs when an alpha or a beta particle is spontaneously emitted by a radioactive isotope.
- 30. Determine the number of neutrons in an atom of U-233.
- 31. Complete the nuclear equation below for the alpha decay of U-238.

 $^{238}_{92}U \rightarrow ^{4}_{2}He +$ _____

32. Identify the highly penetrating radioactive emission that exposed the photographic plates.

Base your answers to questions **33** through **35** on the information below and on your knowledge of chemistry.

Elements with an atomic number greater than 92 can be artificially produced in nuclear reactions by bombarding a naturally occurring nuclide with a different nuclide. One of these elements is roentgenium, Rg. The equation below represents a nuclear reaction that produces Rg-272.

 $^{209}_{83}{\rm Bi} + ^{64}_{28}{\rm Ni} \rightarrow ^{272}_{111}{\rm Rg} + ^{1}_{0}{\rm n}$

- 33. Based on the Periodic Table, classify the element produced by this nuclear reaction as a metal, metalloid, nonmetal, or noble gas.
- 34. Determine the number of neutrons in an atom of Rg-272.

35. State the location and the total charge of the protons in a Ni-64 atom.

Base your answers to questions **36** through **39** on the information below and on your knowledge of chemistry.

A breeder reactor is one type of nuclear reactor. In a breeder reactor, uranium-238 is transformed in a series of nuclear reactions into plutonium-239.

The plutonium-239 can undergo fission as shown in the equation below. The X represents a missing product in the equation.

 $^{1}_{0}n + ^{239}_{94}Pu \rightarrow X + ^{94}_{36}Kr + 2^{1}_{0}n$

36. Write a notation for the nuclide represented by missing product X in this equation.

- 37. Compare the amount of energy released by 1 mole of completely fissioned plutonium-239 to the amount of energy released by the complete combustion of 1 mole of methane.
- 38. Based on Table *N*, identify the decay mode of the plutonium radioisotope produced in the breeder reactor.
- 39. Determine the number of neutrons in an atom of the uranium isotope used in the breeder reactor.