AND LEARNING TARGETS LOG

₄te	Learning Target	Warm Up
$\sqrt{}$		
_)		
		•
1		
1		
		· ·
		<u></u>
) =		
,		
)		

UNIT **7.1**

Atomic Structure Review

What makes an atom radioactive?

atomic
$$\# = 0$$

mass $\# = 12$

Atom: building blocks of _______

Subatomic Particles: particles that are _____ Smaller ____ than atoms

Subatomic Particle	Mass	Charge	Location
Electrons	Ö	-1	orbiting around
Protons	1 amu	+1	MICHELS
Neutrons	1 amy	0	nucleus

Nucleus: center of atom, contains protons and neutrons

Atomic Number: equal to the number of protons, identifies the element

Mass Number: equal to the number of ______ plus the number of ______ plus the number of

<u>Isotopes:</u> atoms of the same element (same <u>atomic</u> number) but have different masses (different <u>masses</u> number)

Isotopic Notation:

UNIT **7.2**

Radioactivity

What does it mean to be radioactive?

Radioactivity is a result of an unstable ratio of _	protons	to
<u>neutrons</u> in	the nucleus.	

Nuclear Processes

- often cause <u>transmutation</u> of elements (when an atom will change from one element to another)
- Nuclear decay
 - - Three types:
 - Alpha particle: <u>helium</u> nucleus (2 protons, 2 neutrons)

 - Gamma particle: photon of light (energy)

UNIT 7.3

Nuclear Fission & Fusion

How has society used nuclear fission and fusion?

Perhaps the most well-known nuclear reactions are: fission and fusion. If your life is dependent on the sun continuing to burn, or you are aware of the existence of nuclear power plants or nuclear weapons, fission and fusion have already been a part of your life.

Fission is the division of atoms

Fusion is the __Wnion

of atoms

Examples: NUClear reactors, atomic bomb

Examples:

the SUN

 $E = mc^2$

Fission and fusion reactions convert small amounts of

mass__ into large amounts of ENER GY

energy than fossil fuels

- A LOT of energy

produced

RISKS

-nuclear waste is radioactive

- nuclear accidents **REWARDS**

RISKS

- no longlived nuclear waste